硅烷偶联剂改性纳米二氧化硅原理及应用

更新时间:2024-08-29 点击:180

硅烷偶联剂改性纳米二氧化硅原理及应用


   纳米二氧化硅是目前世界上大规模工业化生产的产量最高的一种纳米粉体材料,具有特殊的光学性能、光催化特性、填充特性和流变特性,广泛应用于电子封装材料、高分子复合材料、塑料、涂料、橡胶、颜料、陶瓷、胶黏剂、玻璃钢、药物载体、化妆品及抗草材料等领域。但是,和所有超细粉体存在的问题相似,纳米Si02 表面极性强、表面能高,处于热力学非稳定状态,极易发生粒子团聚,在使用时影响纳米微粒所具有的功能。由于纳米SiO2 表面易与空气中的水分子作用而带有轻基,表现出很强的亲水疏油性,在有机介质中难以均匀分散,难以与基料很好结合,易造成界面缺陷,导致材料性能下降,使纳米材料的优越性能得不到应有的发挥。

  bda763c1-587b-4553-be8d-f75276380475.jpg

 纳米二氧化硅如何进行表面改性?

    纳米二氧化硅表面改性的方法较多,主要分为物理改性和化学改性两大类。

   1、纳米二氧化硅的物理改性

纳米二氧化硅的物理改性,主要是通过吸附、包覆等物理作用将改性剂吸引至纳米二氧化硅表面,改变其表面性质,以达到减少团聚、增加分散稳定性的目的。

纳米二氧化硅的物理改性剂主要有表面活性剂、金属氧化物和聚合物等。

采用物理法对纳米二氧化硅进行表面改性,能制备出各种包覆结构的材料,可满足不同应用需要。但由于其只通过范德华力、静电力等简单地吸附或包覆纳米二氧化硅粒子,有机相与无机相之间的作用力较弱,当体系的环境如温度、pH值、压力等条件改变时,可能会出现明显的相分离。

2、纳米二氧化硅的化学改性

纳米二氧化硅的化学改性,主要是利用纳米二氧化硅表面的大量羟基与改性剂反应,以减少羟基数,改变粒子表面的亲疏水性,还可根据需要引入不同的基团,扩大纳米二氧化硅的应用范围。

(1)偶联剂改性法

在纳米二氧化硅常用的偶联剂改性法中,硅烷偶联剂的应用最为广泛,其可与纳米二氧化硅表面的羟基缩合成硅氧键。

采用偶联剂对纳米二氧化硅进行表面改性时,偶联剂需要先水解,才能与纳米二氧化硅反应。而其水解产物会发生自缩合,对水解产物与二氧化硅表面羟基的反应造成阻碍,在一定程度上降低偶联的效能,使纳米二氧化硅的表面改性不完全。

(2)醇酯改性法

醇酯法是在高温高压条件下,采用脂肪醇与纳米二氧化硅表面的羟基反应,以达到改变二氧化硅表面润湿性的目的。

硅烷偶联剂法相比,醇酯法的优点在于改性剂脂肪醇的价格较低廉,易于合成且结构容易控制。但改性效果受醇的烷基链长度的影响,且需要在高温高压下进行,对反应条件要求较高。

(3)聚合物接枝改性法

通过特定方式将聚合物接枝到纳米二氧化硅表面,可有效提高粒子的疏水性并改善其在纳米复合材料中的界面亲和性。接枝聚合物的长链结构可以与基体聚合物之间产生链缠结,使这种修饰更为均匀紧密,同时可根据需要选择不同的接枝单体及接枝条件,使改性更具多样性和可控性。

(4)原位改性法

一般化学改性可有效降低纳米二氧化硅的团聚,但也存在纳米二氧化硅在改性前就团聚的问题。因此,可考虑在纳米二氧化硅的制备过程中完成改性以得到表面功能化的二氧化硅粒子。

   硅烷偶联剂改性二氧化硅作用原理

   硅烷偶联剂是最具代表性的偶联剂,它对表面具有羟基的无机粒子最有效,非常适合纳米SiO2的表面改性。硅烷偶联剂水解后能与纳米SiO2表面的硅羟基作用。偶联剂一端与纳米SiO2表面相连,另一端与有机基体相连。

   经改性后纳米SiO2粒子由原来富含羟基的亲水性表面变成了含有有机官能团R的亲油性表面。表面有机包覆层的存在改善了纳米粒子与周围有机环境的相容性,还能够有效阻止纳米粒子相互之间的团聚,改善它的分散性。

a032131d71096db99a05d75ce87e61412414.png

  硅烷偶联剂改性二氧化硅用量

  偶联剂用量不足时,粉体表面包覆不完全,但偶联剂用量过多时,偶联剂之间易发生交联,也影响偶联剂与粉体之间的相互作用。因此偶联剂用量不易过多,可以按照活化率的具体要求确定合理的偶联剂用量。

偶联剂质量分数建议添加量在1%~-5%范围内.当偶联剂超过一.定加人量时,还会影响纳米SiO2的分散稳定性,使体系凝聚。

其计算公式为

硅烷偶联剂用量=填料用量*填料表面积/硅烷最小包覆面积填料表面积不明时,硅烷偶联剂的加入量可确定为填料的1%左右

二氧化硅改性后的优质特性

未经改性时的纳米SiO2团聚成密集的块状,远远超出了纳米级。而经硅烷偶联剂改性后的纳米SiO2的分散性有了很大的改善,团聚在一起的二氧化硅颗粒大部分分散成纳米级粒子。

利用硅烷偶联剂对纳米SiO2进行改性,从电镜分析、红外分析以及动态光散射粒度分析的结果可以看出,硅烷偶联剂能对纳米Si02进行有效改性,未改性纳米SiO2颗粒之间以团聚体形式存在,经改性后,团聚在一起的二氧化硅颗粒大部分分散成纳米级粒子。

二氧化硅改性后的应用特性

化工材料领域,修饰后的二氧化硅颗粒作为补强填料添加到橡胶、塑料等材料中,能有效地提高复合基体的拉伸强度、耐磨性、流变性、抗老化等性能”,

在催化领域,氨基化修饰的二氧化硅介孔分子筛能够实现胺类催化剂的固载,与传统的有机胺类均相催化反应相比,易于分离和重复使用;


在吸附检测领域,经过特殊改性处理的硅胶展现出了卓越的性能。这种改性硅胶对金属离子具有出色的选择性和吸附能力,因此被广泛应用于色谱分析中作为固定相。此外,它还可以作为一种高效的吸附剂,用于去除水中的重金属离子,如铜离子(Cu2+)、铅离子(Pb2+)和汞离子(Hg2+)等。这种改性硅胶的应用不仅提高了吸附检测的准确性和灵敏度,还为环境保护和水资源净化提供了新的解决方案。


在生物医药领域,由于活性氨基可以与蛋白质、DNA等生物分子偶联,在生物材料分离、酶固定化、靶向药物等方面有重要的应用。





返 回

服务热线

020-82089162

wechat

微信